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We introduce VeloxQ, a fast and efficient solver for Quadratic Unconstrained Binary Optimiza-
tion (QUBO) problems, which are central to numerous real-world optimization tasks. Unlike other
physics-inspired approaches to optimization problems, such as quantum annealing and quantum
computing, VeloxQ does not require substantial progress of technology to unlock its full potential.
We benchmark VeloxQ against the state-of-the-art QUBO solvers based on emerging technologies.
Our comparison includes quantum annealers, specifically D-Wave’s Advantage and Advantage2 pro-
totype platforms, the digital-quantum algorithm designed to solve Higher-Order Unconstrained Bi-
nary Optimization (HUBO) developed by Kipu Quantum, physics-inspired algorithms: Simulated
Bifurcation and Parallel Annealing and an algorithm based on tropical tensor networks. We also
take into account modern developments of conventional algorithms: Branch and Bound algorithm,
an optimal implementation of the brute-force algorithm and BEIT QUBO solver. Our results show
that VeloxQ not only matches but often surpasses the mentioned solvers in solution quality and
runtime. Additionally, VeloxQ demonstrates excellent scalability being the only solver capable of
solving large-scale optimization problems, including up to 2×108 sparsely connected variables, that
are currently intractable for its competitors. These findings position VeloxQ as a powerful and
practical tool for tackling large-scale QUBO and HUBO problems, offering a compelling alternative
to existing quantum and classical optimization methods.

I. INTRODUCTION

Increasing complexity of the real-world optimization
problems presents a considerable challenge for the state-
of-the-art approaches. Growing size and complexity of
industry-relevant problems may soon become a crucial
factor hindering performance of the well-established ex-
act and heuristics methods. Recent progress in new com-
putational paradigms, including quantum computing and
physics-inspired algorithms, provides new opportunities
for development of novel optimization algorithms that
can prove superior to existing methods. For example,
simulation of dynamics of certain classical systems has
recently proved to be a promising heuristic method of
solving QUBO problems [1–3] that, in contrast to other
physics-inspired optimization algorithms such as Sim-
ulated Annealing [4], can take advantage of the con-
ventional parallel hardware. Here we present VeloxQ
[5]: The QUBO solver that, similarly to other emerg-
ing technologies such as quantum computing, goes be-
yond conventional approaches to solving QUBO prob-
lems by adapting a novel physics-inspired methodology.
However, unlike quantum computing, it does not require
any technology developments as it can fully exploit the
enormous potential of conventional computing technol-
ogy. In this way VeloxQ bridges established and emerg-
ing approaches, and facilitates faster uptake of novel
physics-inspired optimization technologies and, when the
technology matures, can be readily integrated into hy-
brid quantum-classical workflows to maximize strengths
of both technologies. In fact, a hybrid solver that allows

to combine various approaches to optimization problems,
including VeloxQ and quantum computing will be pre-
sented elsewhere.

The aim of this paper is to provide an extensive set
of benchmarks that comprehensibly characterize VeloxQ
features such as solution quality and runtime. The space
of QUBO solvers offers several promising solutions, which
we compare with VeloxQ solver. We present bench-
marks against quantum-analog solvers offered by D-
Wave, the quantum-digital optimization algorithm devel-
oped by Kipu Quantum [6], the optimal implementation
of the brute force QUBO solver [7–9], the QUBO solver
with ground-state certification offered by BEIT [10, 11],
physics-inspired algorithm based on tropical tensor net-
works [12], parallel annealing [3] and simulated bifur-
cation algorithm [1], as well as modern developments
of classical Branch and Bound algorithm [13, 14]. The
benchmarks include instances that are favorable for the
solvers compared with VeloxQ, what allows to fully rec-
ognize those solver strengths, and assures that the excel-
lent performance of VeloxQ observed in benchmarks can-
not be attributed to the biased choice of instances. The
results of benchmarks consistently show that VeloxQ ei-
ther matches or surpasses performance of the mentioned
solvers. VeloxQ distinguishes itself from other bench-
marked solutions by its scalability: It is the only solver
able to achieve remarkable solution quality and runtime
for large-scale optimization problems that are intractable
for its competitors (however, as for some solvers in the
comparison VeloxQ results are not certified, i.e. the
found solution is not guaranteed to be the optimal one).
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For example, VeloxQ is able to solve optimization prob-
lem based on Zephyr graph Z1750 that involves more than
9.8 × 107 variables. We estimate, based on D-Wave de-
vices release dates, that a quantum annealer able to han-
dle such a problem would be available no sooner than
in 30 years, see Fig. 1. A similar conclusion concerning
required hardware can be drawn for the case of digital
quantum algorithm developed by Kipu Quantum, where
VeloxQ can handle an instance of 2 × 108 variables.

There are notable emerging QUBO solution technolo-
gies that we do not include in this comparison. Memcom-
puting is one of the promising approaches to the QUBO
optimization problem [15], however we were not able to
get access to any solver utilizing this approach. A lot
of efforts are devoted to investigations of Coherent Ising
Machines [16], in the context of hardware [17], and theo-
retical understanding of the relation between binary so-
lution and its continuous relaxation [18]. We decided
not to include Coherent Ising Machines into our study
as they behaviour is similar to the Simulated Bifurca-
tion algorithm. We also implemented annealer based on
the Hamiltonian Monte Carlo [19] but the initial results
of this approach were not satisfying and we did not pro-
ceed with an extensive benchmark. Approaches based on
classical thermodynamics, like quadratic programming
enhanced by thermodynamic linear algebra subroutines
[20, 21], were not taken into account as they require spe-
cialized hardware that is currently unavailable, and they
do not allow to solve binary problems natively.

In cases, when the instance size allowed it, the ref-
erence solution was generated by CPLEX [22]. Those
cases provide an indirect benchmark of VeloxQ against
the well-established classical QUBO solution methods,
and they clearly show that the performance of VeloxQ in
terms of solution quality and runtime is favorable as com-
pared to standard tools adopted in the industry. Here
again the most prominent feature of VeloxQ distinguish-
ing it from well-established conventional solvers is its per-
formance on large-scale instances: Runtime of VeloxQ
was less than two minutes, and we were not able to es-
tablish the required runtime for CPLEX (our estimate is
that it is on the order of weeks rather than days).

To make the paper self-contained in Sec. II the defi-
nition of QUBO problems is provided, and its relation
to the Ising model, as well as the Higher Order Un-
constrained Binary Optimization problems. In Sec. III
state-of-the art approaches to solving QUBO problems
are presented. Subsequently, benchmarks and their re-
sults are described: In Sec. IV benchmarks against D-
Wave quantum annealers, in Sec. V against digital quan-
tum algorithm developed by Kipu Quantum, in Sec. VI
against solvers with certified solutions including BEIT
solver [10, 11] and a tropical tensor networks approach.
In Sec VII results of benchmarks against physics-inspired
algorithms: parallel annealing and simulated bifurcation
are presented, and in Sec. VIII against refined Branch
and Bound algorithm proposed by Quantagonia [14]. We
summarize our findings in Sec. IX.

Examples of benchmark instances, as well as the scripts
that were used to generate the instances are available in
the online repository [23].
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FIG. 1. Comparison of past, current and predicted qubit
count of D-Wave’s quantum annealers, to current capabili-
ties of VeloxQ — Z1750 with ∼ 9.8 × 107 variables (purple
hexagon). Assuming a doubling period of two years (esti-
mated from historical data), we can roughly estimate that
a quantum device capable of natively handling such instances
will be available around 2054.

II. QUADRATIC UNCONSTRAINED BINARY
OPTIMIZATION

QUBO problems constitute an important class of opti-
mization problems with applications in many areas rag-
ing from operational research to portfolio optimization
[24]. They encode the task of finding a binary vector
x ∈ {0, 1}N that minimizes a quadratic function Q(x),

Q(x) =
∑
i≤j

Qijxixj . (1)

The optimization problem encoded in QUBO can be
equivalently formulated in terms of the Ising model. The
latter originates from statistical physics, and describes
energy associated with a particular configuration of dis-
crete variables (spins) s ∈ {−1, 1}N :

H(s) =
∑
i<j

Jijsisj +
∑
i

hisi. (2)

The transformations between QUBO and Ising formula-
tions is presented in Appendix A. The Ising-QUBO rela-
tion opens possibility for tackling optimization problems
with analog quantum devices such as quantum annealers,
as well as gate-based quantum computers [25]. Despite
the equivalence there are case (e.g. random instances),
in which application of a QUBO solver to a QUBO for-
mulation of the Ising problem may perform poorly [26].

In general QUBO belongs to the NP-hard prob-
lems, and many NP-problems can be embedded into
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QUBO [27], such as graph coloring [28], max-cut [29],
traveling salesman [30] or boolean satisfiability [31], as
well as Higher Ordered Unconstrained Binary Optimiza-
tion problems [32], whose cost function includes multi-
variable terms of order P:

P (x) =
∑

i1,··· ,iN
i1+···+iN≤P

ai1...iNxi1
1 . . . xiN

N . (3)

Third-order HUBO problems will be used to benchmark
our solver against proposed quantum algorithms capable
of solving such HUBO problems natively.

III. STATE OF THE ART QUBO SOLVERS

For the purpose of this paper we will divide solver ca-
pable of handling QUBO problems into the following cat-
egories: classical, analog-quantum, and digital-quantum
solutions, as well as physics inspired algorithms.

To the first group belong solvers that run on conven-
tional hardware. CPLEX [22] and Gurobi [33] solvers
have been widely used in the industry for optimization
problems, including QUBO problems. They implement
both exact and heuristic solving methods [34]. Linear in-
teger problem solvers also can be used to handle QUBO
problems, due to the existence of reformulation of QUBO
as a linear constrained binary problem. In general, the
performance of general purpose classical solvers such as
those mentioned above depends strongly on the problem
structure and its size. Some classical solvers are designed
to handle problems of specific structure e.g. BEIT QUBO
solver [10, 11], which accepts instances of Chimera graph
topology and restricted size. There are also attempts to
utilize deep reinforcement learning to solve QUBO prob-
lems [35, 36].

Due to the connection between QUBO problems and
Ising models, quantum annealers have been employed to
solve QUBO problems [37]. The main limitation of this
approach is the number of qubits available on a quan-
tum annealer, and its topology, which restricts the class
of problems that can be natively implemented on a de-
vice. Problem instances not matching topology of a de-
vice require embedding that introduces computational
overhead. The possibility of achieving some sort of com-
putation advantage over classical methods is still debated
[38], and the there is an ongoing investigation of partic-
ular use-cases such as protein-folding [39], or grid cost
allocation in electricity markets [40]. Due to the impor-
tance of quantum Ising model [41] quantum annealers are
also important scientific tool [42].

In the context of gate-based quantum computers there
exists a family of optimization algorithms exploiting sub-
routines such as Quantum Phase Estimation or Grover
algorithm [25], and there are cases of quantum algorithms
that exhibit super-polynomial speedup over classical al-
gorithms for a certain class of optimization problems [43].
However, those algorithms remain theoretical proposals

since the present generation of quantum hardware, de-
spite the recent progress [44], are still not useful for com-
mercially relevant combinatorial optimization problems.
On the other hand, the so-called Variational Quantum
Algorithms (e.g. Quantum Approximate Optimization
Algorithm [45]) are proposed as quantum heuristic that
can be run on available devices. However, in most cases
it remains unclear whether such algorithms lead to some
advantage over best-known classical algorithms. For a
recent overview of the field see [25].

There is also a group of physics-inspired algorithms
that utilizes conventional computing technology. Ar-
guably the best known algorithm belonging to this group
is Simulated Annealing, which was introduced in 1980s
[4], and is still being studied e.g. to develop opti-
mized versions for particular use-cases [46]. To re-
cently developed physics-inspired algorithms belong al-
gorithms such as Simulated Bifurcation [1], and tensor
networks [47], or classical algorithms inspired by quan-
tum annealing [3, 48]. It is also interesting to note that
the many algorithms in convex optimization, such as Al-
ternating Direction Method of Multipliers [49], can be
formulated in terms of dynamical systems [50–52].

IV. BENCHMARKS AGAINST D-WAVE
QUANTUM ANNEALERS

The aim of this benchmark is to compare our flag-
ship product, VeloxQ solver, against the state-of-the-art
quantum annealers, represented by the D-Wave Advan-
tage and D-Wave Advantage2 prototype platforms. Due
to the underlying topologies of those quantum process-
ing units (QPUs), Pegasus P16 and Zephyr Z6 respec-
tively (cf. Fig. 2), most real-world problems have to be
mapped to the hardware graph in a process known as
minor embedding [53], which introduces, sometimes sig-
nificant, overheads in terms of total time of solution and
qubits required. On the other hand, in the case of VeloxQ
solver the minor embedding of a problem is not used as
the solver handles natively all problem topologies. Due to
this difference between solvers, in order to obtain direct
comparison of their performance, in the first benchmark
we decided to focus on instances that are native to the
D-Wave hardware, and thus do not require minor em-
bedding. That is, we will be solving QUBO problems
with cost function given by Eq. (1), where the problem
structure match that of undirected (sub)graph of the Pe-
gasus or Zephyr structure (the binary variables are placed
on vertices of a (sub)graph, the edges of the (sub)graph
correspond to couplings the variables). Elements of the
coupling matrix Q are chosen randomly from a uniform
distribution on the interval [−1, 1]. For a reference so-
lution, we solved the original QUBO problems using an
industry-standard optimization suite – CPLEX. It was
allowed to run for 20 minutes, which is a much longer
timescale than on which both VeloxQ and D-Wave an-
nealers operate.
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a) P2 graph b) Z1 graph

FIG. 2. Illustration of the basic building blocks of the D-
Wave’s Pegasus [54] and Zephyr [55] topologies. a) Pegasus
graph P2 on 40 qubits, underlying current-gen D-Wave Ad-
vantage QPUs. This topology supports K4 and K6,6 graphs
natively. b) Zephyr graph Z1 on 48 qubits, forming the basis
of the next-gen topology used in the Advantage2 prototype
and future devices. Enables direct embedding of K4 and K8,8

graphs.

Real-world optimization problems, such as portfolio
optimization [56], are often expressed by QUBO mod-
els with the number of variables considerably exceeding
number of qubits of the current quantum annealers. To
demonstrate scalability of VeloxQ solver we also consider
instances of the structure described above in the size-
range intractable for the D-Wave annealers (due to avail-
able number of qubits). However, we make use of the
dwave-hybrid Python package, offering the so-called Ker-
beros hybrid solver that uses quantum annealer to han-
dle subproblems of the initial problem [57]. The bench-
mark set consist of problems of Pegasus structure up to
P150 with approx. 5 × 105 variables, and Zephyr struc-
ture up to Z150 with approx. 7.2×105 qubits, going more
than 103 in problem size beyond the capabilities of cur-
rent and near-future quantum annealers. Reference solu-
tions for these large scale instances were obtained using
an efficient, GPU-based implementation of the SA algo-
rithm [4].

For each benchmark we present results from VeloxQ
solver obtained with two different sets of solvers param-
eters. Results denoted as ‘AutoTune VeloxQ’ were ob-
tained with the default set of parameters, without any
prior knowledge about the structure of the problems,
which sometimes results in a longer runtime. The results
denoted as ‘Custom VeloxQ’ use the in-built flexibility
of VeloxQ to adjust the solver parameters that control
the trade-off between the solution quality and runtime,
based on some knowledge about the problem and/or prior
solver runs.

For examples of benchmark instances, as well as scripts
that were used to generate them see the online repository
[23].
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FIG. 3. Low-energy spectra for a random QUBO problem
on P16 graph, consisting of 210 states each, obtained with
D-Wave Advantage platform (red), AutoTune VeloxQ (blue)
and Custom VeloxQ (green). The distributions produced by
VeloxQ are qualitatively different from the D-Wave’s, shifted
towards lower energies and, in case of AutoTune VeloxQ, more
concentrated around the mean. Custom VeloxQ spectrum,
tuned for shorter runtime, is more spread out, with longer
high-energy tail, yet the lowest-energy state is reasonably
close to the best configuration from the AutoTune VeloxQ.
This highlights the versatility of our solver, allowing for eas-
ily controlled trade-off between the solution quality and the
runtime.

A. Pegasus topology

To test the statistical performance on comprehensive
set of problem sizes, initially we generated 20 random
instances for each Pegasus graph being a subgraph of
P16, that is P2, P3, . . . P16. All possible couplings and
biases where chosen from the uniform distribution on the
interval [−1, 1]. We measure the optimality gap defined
with respect to the CPLEX solution sref

g(s, sref) =
H(s) −H(sref)

|H(sref)|
, (4)

and the total runtime, including overheads related to the
communication with the solver through an appropriate
API. Note, that due to inviability of the true optimal
solutions, i.e. ground states, the gap, henceforth referred
to as reference gap, can be negative. Such cases indicate
that the solution obtained by the solver is better than
the reference one.

Due to the inherently probabilistic nature of quantum
measurements, the D-Wave quantum annealers produce
an ensemble of samples, from which the best is usually
chosen as the final solution. However, when treating the
QPU as just a part of a hybrid solver, dealing with se-
lected subproblems, it might be beneficial to use more
that just one results of local optimization, to avoid the
risk of getting stuck in a local minimum. VeloxQ, even
though it is a classical solver, emulates this behavior and
also produces a low-energy spectrum of solutions. An
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example of such spectra, both for VeloxQ and D-Wave
annealer, is presented in Fig. 3. In subsequent bench-
marks AutoTune VeloxQ and D-Wave annealers are set
to produce 210 samples, and the best solution is chosen
to calculate the reference gap. Both quantities are aver-
aged over realizations of a given graph size (see figures
description for details). Results of the experiments are
presented in Fig. 4. By default, VeloxQ solver operates
with a carefully chosen default set of parameters with
an instance-depended tuning. The panel a) in Fig. 4
demonstrates that even with default settings (denoted
by AutoTune VeloxQ), our solver obtains solutions very
close to the reference ones, and even outperforms them
for the largest instances. Despite the fact that the in-
stances are tailored to match the structure of D-Wave
Advantage platform, the annealer does not present any
advantage over VeloxQ in terms of solutions quality. The
use of the quantum annealer results in an order of magni-
tude shorter time-to-solution for the considered instances
(Fig. 4) than those of VeloxQ solver with default settings.
However, by an appropriately tuning VeloxQ parameters
we are able to achieve a similar or better runtime, while
maintaining the high quality of the solutions.

To investigate the regime beyond native QPU capa-
bilities, we prepared random instances of Pegasus topol-
ogy with size parameter m ∈ {20, 30, . . . , 150}, five for
each m, and computed reference solutions with SA al-
gorithm [4]. The results are presented in Fig. 4 c) (ref-
erence gap) and d) (runtime). VeloxQ solver is able to
consistently obtain high-quality solutions, matching the
hybrid Kerberos solver solution quality, and outperforms
Kerberos in terms of runtime as the time-to-solution is
ten times faster. By adjusting VeloxQ solver parameters,
the runtime can be further reduced by an order of mag-
nitude at a relatively small cost in the solution quality.
Crucially, the Kerberos solver with default parameters
was not able to produce solutions for instances larger
than P60, that is ∼ 85 × 103 variables, whereas VeloxQ
performed well across the whole range of problem sizes,
up to P150 with ∼ 500 × 103 variables.

For completeness, we have tested the other end on the
difficulty spectrum for quantum annealers, that is prob-
lems with all-to-all connectivity. We prepared random
Ising models on complete graphs with up to 160 vertices,
translating to 2536 qubits after embedding. The exper-
iments were conducted, and data gathered, in the same
fashion as for instances with Pegasus topology. They are
presented in Fig. 5. Even though there are specialized
routines for clique embedding, the overheads related to
newly introduced auxiliary qubits, significantly degrades
the performance of the D-Wave Advantage sampler, with
optimality gaps reaching double digits for the largest in-
stances. VeloxQ solver, on the other hand, is able to
solve the problems with high accuracy and in extremely
short time, even in comparison to the annealer with the
embedding time excluded.
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FIG. 4. Performance of VeloxQ solver on problems with
Pegasus topology, with D-Wave comparison where possible.
Panels a), c): respectively, reference gap w.r.t. to CPLEX
reference solution and total runtime (averaged over 20 ran-
dom problems), for instances being subgraphs of P16, i.e. the
Pegasus graph underlying the QPU of the D-Wave Advan-
tage6.4 platform. Error bars mark the standard deviation.
Inset shows how number of qubits scales with the size pa-
rameter of the graph. Panels b), d): the same as in a), c)
but for larger instances of Pegasus topology, up to P150 (av-
eraged over 5 random problems). Reference solutions in this
regime were obtained using Simulated Annealing (SA) algo-
rithm. VeloxQ solver is able to match both the quality and
the time to solution of the D-Wave’s Pegasus-based QPU in
the regime Pm≤16. For larger problems, our solver, with de-
fault parameters, obtains samples of quality very close to the
Kerberos hybrid solver, but in significantly shorter time, up
to almost three orders of magnitude. If the time to solution
is a priority, custom settings allow for a runtime reduction
of another order of magnitude, with only a slight decrease
in the solution quality. The Kerberos solver was limited to
solve instances beyond P60, as for larger ones to running out
of memory on a machine with 1 TB of RAM.

B. Zephyr topology

Finally, we proceed to the newest D-Wave platform,
the Advantage2 prototype. As of the beginning of 2025,
the device’s topology is limited to the Zephyr graph Z6,
consisting of approximately 1200 qubits, which imposes
a limit of problem sizes for which we can conduct a 1-to-
1 comparison with the QPU. Nevertheless, we prepared
randomized optimization problems native to the Zephyr
graphs of size up to Z15 with 7000+ qubits, which is the
promised structure of the final Advantage2 device, com-
ing in the near future [58]. Motivated by the excellent
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FIG. 5. Performance of VeloxQ solver in comparison to quan-
tum annealer, on problems with all-to-all connectivity. Panel
a): optimality gap (averaged over 20 problem realizations)
w.r.t. to CPLEX reference solution. Inset shows how many
qubits are needed to embed a complete graph into P16 Pega-
sus graph. Panel b): total runtime. Empty symbols denote
results for D-Wave machine with excluded time of embedding.
Due to the overheads related to the embedding process, the
D-Wave Advantage sampler produces solutions of poor accu-
racy. VeloxQ, being in principle insensitive to the problem
topology, is able to produce solutions very likely to be close
to the ground states (reference gap close to zero), in a time
much shorter than the quantum annealer.

performance of VeloxQ on the Pegasus topology, we de-
cided to extend the range of the benchmark even further,
far beyond the capabilities of yet-to-be-released quantum
hardware, to a Z1750 graph with more than 9.8 × 107

qubits. We estimate that a device capable of handling
such instances would be available in approximately 30
years (cf. Fig. 1). This prediction is based on the assump-
tion that the current prototype device with Zephyr topol-
ogy (Advantage2 QPU with 4400 qubits) would double
its size every two years, what is in accordance with pre-
vious D-Wave devices releases. We also assume and that
scaling challenges such as hardware reliability (e.g. num-
ber of idle qubits), control electronics, and communica-
tion bandwidth, would not hinder development of anneal-
ing devices. Technical details of the computational ex-
periments remain the same as in the previous case, with
the new results presented on Fig. 6. Once again, VeloxQ
is able to closely match both the quantum annealer and
the quantum-enabled hybrid solver, in terms of solution
quality and total runtime. Moreover, we confirm the scal-
ability of our solver, and its promising performance even
in regimes far beyond the capabilities of next-generation,
Zephyr-based quantum hardware.

V. BENCHMARKS AGAINST KIPU
QUANTUM SOLVER

In this section we compare VeloxQ solver to the
Kipu Quantum solver BF-DCQO [6], which is a digital-
quantum computer algorithm for solving higher-order
unconstrained binary optimization (HUBO) problems.
QUBO solvers, such as VeloxQ or quantum annealers,
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FIG. 6. Performance of VeloxQ solver on problems with
Zephyr topology, with D-Wave comparison where possible
(dashed red lines indicate regime of problems possible to
solve directly on the D-Wave Advantage2 prototype). Panels
a), c): respectively, optimality gap w.r.t. to CPLEX refer-
ence solution and total runtime (averaged over 20 problem
realizations), for instances of the Zephyr type. Inset shows
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graph. Panels b), d): the same as in a), c) but for larger
instances of Zephyr topology, up to Z150. Reference solu-
tions in this regime were obtained using Simulated Annealing
(SA) algorithm. Similarly to the case of Pegasus benchmarks,
VeloxQ solver is able to match rather closely the D-Wave’s
Advantage2 prototype performance both in the small instance
regime (Zm≤6), where direct QPU sampling is possible, and
in the large instance regime, where the annealer is used as a
part of the hybrid workflow. Kerberos solver once again was
memory-constrained to instances no larger than Z60. Inset in
panel d) shows the runtime of VeloxQ solver for much larger
Zephyr instances, up to Z1750 with more than 90×106 qubits.
Here, we do not make any claims about the quality of the so-
lutions, as it is difficult to obtain reference solutions for such
large instances. Nevertheless, VeloxQ is able to produce sam-
ples in a reasonable time, and the runtime keeps its consistent
scaling behavior.

can be used to solve HUBO problems (such as 2-SAT) at
the expense of dealing with problem of increased variable-
size and complexity (the necessary reduction of a HUBO
problem leads to a QUBO problem with increased num-
ber of variables and increased complexity [32]). The
advertised advantage of the Kipu Quantum algorithm
over QUBO solvers is that it solves HUBO problems na-
tively and the costly reduction HUBO-QUBO reduction
is avoided. In the benchmarks we compare performance
of VeloxQ to results obtained with Kipu Quantum solver
BF-DCQO [6].
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A. Higher-order unconstrained binary optimization

The benchmark consists of two types of problems: NP-
complete 3-Satisfiability (3-SAT) and one-dimensional
random spin glass with three-body interactions. These
problems were selected to facilitate a direct comparison
with the results of the Kipu Quantum solver BF-DCQO,
which in part were obtained using digital quantum hard-
ware - IBM FEZ quantum platform (the chain structure
of these problems is particularly well suited to the topol-
ogy of existing IBM quantum processors) [6].

For examples of benchmark instances, as well as scripts
that were used to generate them see the online repository
[23].
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FIG. 7. Results of the benchmarks for random 3 body Ising
model, Eq. (5). a) Quality of the solutions obtained by
VeloxQ solver, measured by the relative gap to the refer-
ence solution from CPLEX (squares) and Simulated Anneal-
ing (SA) (circles), obtained with default (blue) and custom
(green) settings. Red triangle and diamond denote results
for, respectively, BF-DCQO on real and simulated quantum
hardware, as reported in [6]. b) Runtimes of VeloxQ solver
for default (blue right triangles), and custom (green left tri-
angles) settings. We also present the time needed to obtain
the reference solutions by CPLEX (orange squares) and SA
(purple circles). SA for instances with more than 106 vari-
ables (indicated with vertical dashed line) was run with mod-
ified parameters, to ensure the results were obtained in rea-
sonable time. Despite the factor of 2 overhead introduced
by HUBO→QUBO reduction, VeloxQ demonstrates excellent
performance in problems spanning 7 orders of magnitude in
size, from 100 to 108 variables. The quality of the solutions
is within approx. 3% of the reference solution in the small to
intermediate range, and even outperforms the SA results for
the largest instances (CPLEX failed to produce solutions in
this regime). Furthermore, this is achieved in a time of up to
3 orders of magnitude shorter than the reference solvers.

Due to the fact that test instances were not provided
in [6], we generated our own benchmark set. In the case
of instance of HUBO problems corresponding to a one-
dimensional spin glass the cost function is equivalent to
the Hamiltonian

HNN(s) =

N∑
i=1

hisi +

N−1∑
i=1

Jisisi+1 +

N−2∑
i=1

Kisisi+1si+2,

(5)

where the couplings hi, Ji,Ki are drawn randomly from a
Gaussian distribution with zero mean and unit variance.

The cost function corresponding to the weighted MAX
3-SAT problem is given by the Hamiltonian

HMW3S(s) =

N−2∑
i=1

ωi

8
[1 + (−1)cisi] [1 + (−1)ci+1si+1]

× [1 + (−1)ci+2si+2] , (6)

and it aims to maximize the weighted sum of satis-
fied clauses, where each clause consists of three propo-
sitional variables and is weighted by a random value ωi,
drawn from a uniform distribution on the interval [0, 1].
The ci are either 0 or 1, chosen randomly, and deter-
mine whether the corresponding propositional variable is
negated or not.

As VeloxQ solver can currently only handle second-
order cost functions natively, we perform a reduction of
the form

±sisjsk → 3 ± (si + sj + sk + 2saux)

+ 2saux (si + sj + sk) + sisj + sjsk + sisk, (7)

where saux is an auxiliary variable [32]. This has a neg-
ative impact on the achievable problem sizes — we need
to introduce one additional variable per each third-order
term, which can quickly become prohibitive for large
problems. However, as demonstrated by the results in
the following sections, our solver is characterized by ex-
cellent scalability and can still handle HUBO problems
of considerable size.

B. Benchmarks results

The left panel of the Figs. 7, 8 demonstrates the qual-
ity of the solutions obtained by VeloxQ solver, measured
by the relative distance to two kinds of reference solu-
tion: obtained by the industry-standard CPLEX solver,
and the SA algorithm. The right panel displays the cor-
responding time needed to obtain the solution.

Across a broad range of problem sizes, from a modest
100 variables, up to considerable 108 ( 2×108 variables af-
ter HUBO −→ QUBO reduction) VeloxQ demonstrates ex-
cellent performance, with reference gaps barely exceeding
3% in the structureless random case, and staying below
0.01% for the structured MAX 3-SAT problems. For the
largest instances, with more than 106 variables it even
outperforms best known solutions from other solvers.
Comparison of runtimes with CPLEX demonstrates an-
other advantage of VeloxQ solver, namely a predictable
and consistent scaling with problem size, depending in
principle only on the density of the problem and not any
particular structure. Moreover, it significantly outper-
forms a native HUBO solver proposed by Kipu Quan-
tum [6] (in terms of solution quality and tractable prob-
lem sizes), both in the case of computer simulation (red
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FIG. 8. Results for weighted MAX 3-SAT problem, given by
Eq. (6). Contents of panels a) and b) are analogous to Fig. 7.
Interestingly, CPLEX is able to exploit the structure of this
class of problems to arrive at solutions of very high quality
in a short time, in particular much better and faster than
SA, the other reference solver. Moreover, its runtime scales
with system size similarly to other solvers, in contrary to the
case of structureless random instances. Nevertheless, VeloxQ
is able to find solutions within 0.01% of CPLEX, in a time
more than an order of magnitude shorter for instances larger
that 104 variables and similar time for smaller problems.

diamonds) and execution on a real quantum comput-
ing platform from IBM (red triangles), providing a com-
pelling argument for the usefulness of scalable, native
QUBO solvers for higher-order problems.

VI. BENCHMARKS AGAINST SOLVERS WITH
GROUND STATE CERTIFICATION

A generic QUBO problem is NP-hard, what implies
that one cannot expect to find the ground state in polyno-
mial time [59]. Nevertheless, provably optimal solutions,
even for relatively small problems, are very valuable e.g.
for assessing the performance of heuristic solvers, clas-
sical or quantum. Beyond benchmarking, exact solvers
can be useful as subroutines in various hybrid algorithms,
which decompose large scale problems into smaller, man-
ageable chunks and then merge the individual solutions
to find a low-energy state of the original problem [60].

We can distinguish essentially two types of exact
QUBO/Ising solvers: brute-force (BF), which system-
atically explores the entire solution space, and special-
ized solvers that exploit the structure of a problem to
guarantee reaching a ground truth. The former type is
completely general, i.e. able to handle any QUBO in-
stance regardless of its structure, but due to exponential
growth of the solution space, it is only feasible for small
problems, up to ∼ 60 variables with sophisticated imple-
mentation [9] on modern hardware. In the latter case,
the generality is sacrificed for the sake of efficiency, as
the solvers are tailored to specific problem classes, and
in turn can handle larger instances, sometimes even up
to ∼ 1000 variables for sufficiently simple topologies [12].

In this section we compare VeloxQ to solvers with
ground state certification. First, VeloxQ is benchmarked

against the efficient implementation of the Brute-force
solver [9]. Then, as examples of solvers exploiting the
problem structure, we take into consideration BEIT’s
solver [10, 11], and a method based on tropical tensor
networks [3].

For examples of benchmark instances, as well as scripts
that were used to generate them see the online repository
[23].

A. Brute force solver

To illustrate the ability of VeloxQ to produce exact so-
lutions of small problems, we compare it against a state-
of-the-art, GPU-accelerated exact solver based on dis-
tributed brute-force approach [9]. Due to the exponential
growth of the solution space, we consider problems with
up to 60 variables with all-to-all connectivity and ran-
dom couplings from range [−1, 1], which can be solved ex-
actly in approximately three days, utilizing 2×4 NVIDIA
H100 GPUs. Remarkably, VeloxQ solver is able to match
the quality of the solutions, i.e. obtain the same ground
states, in a time of order of less than a millisecond, and
essentially constant across all considered instance size.
Detailed runtime results are presented in Fig. 9.
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FIG. 9. Benchmark results of VeloxQ against state-of-the-art
brute force solver (BF). Red triangles denote the BF results,
whereas green squares and blue circles represent VeloxQ in
Custom and AutoTune modes, respectively. Horizontal guide-
lines correspond to runtimes of one second, minute and hour.
The runtime of the BF solver grows exponentially with the
problem size, and for instances larger than 58 variables al-
ready exceeds the one-day mark. VeloxQ runs in constant
time regardless of the variable count, and is able to match
the quality of the BF solutions in a fraction of a millisecond.

As for the larger problem sizes in Fig. 5, we have al-
ready demonstrated that VeloxQ solver is capable of solv-
ing fully connected random (structureless) problems with
up to 160 variables, on timescales of order of milliseconds,
obtaining configurations of vanishing gap with respect to
the ones obtained with the industry standard CPLEX
solver, taking up to 20 minutes for the largest instances.
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Note, that the maximal size of the problem was limited
by the maximal clique embedded into the Pegasus graph
P16, and not by VeloxQ itself. Even though our solver
does not offer a full certification of the ground state, most
of the computed states in this case are likely to corre-
spond to the ground truth, or at least be very close to
it. At the same time, the considered problem sizes are
far beyond capabilities of even the best brute-force algo-
rithms.

B. Structure-exploiting solvers

The aim of the second part is to compare VeloxQ
against the other class of exact solvers, in particular
two concrete examples: an exact QUBO solver for the
Chimera topology, offered as one of the commercial solu-
tions by BEIT Inc. [10, 11], and a specialized solver based
on the concept of Tropical Tensor Networks (TTN), in-
troduced by [12]. Out of the three considered options, the
proprietary BEIT’s solver, utilizing dynamic program-
ming on bounded treewidth graphs, is the most limited
in terms of the problem structure, as it can only handle
problems with up to 1024 qubits, arranged in a 8 × 16
Chimera lattice. Furthermore, the QUBO couplings are
restricted to integers in the range [−31, 31]. The TTN
solver on the other hand, is more general, as it has no
inherent limitations on the problem structure. It exploits
the tensor network representation of the Ising Hamil-
tonian, and an observation that the zero-temperature
limit of the partition function (which encodes the ground
state energy) finds a natural formulation in terms of
the so-called tropical algebra, which is a semiring over
R∪{−∞} with addition replaced by the maximum oper-
ation, x⊕ y = max(x, y), and multiplication by the sum,
x ⊗ y = x + y. To obtain the corresponding state, au-
tomatic differentiation of the contraction outcome with
respect to the tensor elements is performed. However,
the complexity of tensor network contraction depends on
the structure of the graph underlying the QUBO prob-
lem, and so the TTN solver performs best on relatively
sparse problems.

To assert the fairness of the benchmark, we investigate
the performance of these three solvers on a most gen-
eral problem that can be handled by all of them, namely
random Chimera instances, with sizes ranging from 128
(C2,8) to 1024 (C8,16) variables, and random integer cou-
plings in the range [−31, 31]. Importantly, all solvers ob-
tained the lowest energy solution for instances they were
able to process, and so the comparison is based on the
time needed to reach the solution. The results are pre-
sented in Fig. 10. Unfortunately, BEIT’s chimera solver
is available only through the AWS cloud service, which
makes the true runtime obscured by the request over-
head [10, 11]. This is visible in the almost constant time
to solution for instances of different sizes, so it is safe to
assume that the actual computation time is much shorter.
Regardless, effective runtime of approximately 2 minutes
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FIG. 10. Results of the benchmark of VeloxQ against solvers
with ground state certification. Because all solvers found op-
timal solutions, we present only the runtimes. Red crosses de-
note the BEIT’s solver (obscured by AWS-related overheads),
whereas blue circles and green squares represent VeloxQ in
AutoTune and Custom modes, respectively. Filled triangles
correspond to the TTN solver operating in energy-only mode
and empty triangles include differentiating through the net-
work to obtain the state. Contraction of a Tropical Tensor
network seems to perform better on CPU than on GPU, at
least for the energy computation mode. Even though VeloxQ
solver is not guaranteed to return the ground state, for rela-
tively small instances it is able to match the solution quality
of specialized solvers, without sacrificing its generality and
scalability.

for a certified ground truth on 1024 variables is still an
impressive result. Both the BEIT’s solver and VeloxQ al-
ways return the state alongside its energy. However, the
nature of TTN solver allows the user to choose between
computing just the lowest energy, or both the energy and
the corresponding state. In case of CPU computations,
the latter option is significantly more time-consuming,
with up to 3 orders of magnitude increase in the run-
time. Interestingly, the GPU version does not suffer from
such a dramatic slowdown, and the difference is almost
negligible. Nevertheless, the complexity of tensor con-
traction increases rapidly with the problem size, and the
TTN solver cannot handle the problems larger than 448
variables, corresponding to the C8,7 Chimera graph.

VeloxQ solver consistently delivered optimal configura-
tions in time much shorter than other solvers, except for
the two smallest instances. These results further corrob-
orate the claim about versatility of our solver and prove
that if the ground state certification is not a strict re-
quirement, it can be a very competitive alternative to
both open-source and proprietary, specialized solutions,
even for tasks of modest size.
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VII. BENCHMARKS AGAINST
PHYSICS-INSPIRED ALGORITHMS

Ever since the introduction of the SA algorithm in the
1980s [4], physical processes have been a rich source of
inspiration for optimization algorithms. The idea is to
map the optimization problem onto a physical system
in such a way that the optimal solution corresponds to
the lowest energy state, the so-called ground state, of the
system. The system is then evolved according to the laws
of physics, which, under appropriate conditions, favor the
evolution towards low-energy states, akin to a ball rolling
down a hill. In this section, we compare VeloxQ against
two such state-of-the-art algorithms: Parallel Annealing
(PA) and Simulated Bifurcation (SB), both having their
roots in quantum adiabatic optimization.

PA is a variant of an annealing algorithm, designed to
leverage the massively parallel nature of modern hard-
ware accelerators [3]. As this is a classical algorithm,
quantum spins are first replaced by classical spins, i.e.
binary variables taking values ±1. These spins are sub-
sequently relaxed to analog variables in the range [−1, 1],
emulating the idea of quantum superposition. Real clas-
sical spins are recovered via the sign function. The ini-
tial Hamiltonian is taken to be a convex function with
easy to find global minimum (ground state), such as x2,
and gradually shifted towards the target Hamiltonian,
encoding the QUBO problem in Ising form. Since this
is a simulation of a physical process, the analog spins do
not update automatically — a suitable update rule must
be chosen, and in the case of PA, it is a modified version
of gradient descent, called the straight through estima-
tor. For the purposes of this benchmark, we have cre-
ated a custom, GPU-accelerated implementation of the
PA algorithm. Technical details about PA are outlined
in Appendix B.

Simulated Bifurcation Machine (SBM), an Ising solver
implementing the idea of simulated bifurcation, was first
proposed in 2016 [1] by Toshiba’s researchers, in form
of a quantum computer consisting of a nonlinear oscil-
lator network, adiabatically driven through a bifurca-
tion point, and generating a superposition of quantum
states that encodes the solution to a given combinato-
rial optimization problem. Since an appropriate quantum
hardware is not yet readily available, and the simulation
of a system working as general purpose quantum com-
puter is computationally infeasible, in subsequent work
a sequence of approximations was proposed, yielding a
classical nonlinear dynamical system, governed by non-
autonomous Hamiltonian equations of motion for har-
monic oscillators with quartic nonlinearity, coupled via
interaction that encodes the Ising problem [2]. The equa-
tion of an individual oscillator is also known under the
name Duffing equation. This quantum-inspired solver
leverages classical chaos and bifurcation to explore the
solution space. Initially dominated by the parabolic min-
imum, post-bifurcation the energy landscape governing
the evolution approximately encodes the local minima of

the Ising term, and thus the state of the system flows to-
wards the low-energy solutions of the optimization prob-
lem, which then can be extracted by taking the sign of
the analog variables. Furthermore, the chaotic behavior
of this system of equations allows for a natural paral-
lelization, as many initial states can be simultaneously
evolved and the best solution can be selected. A com-
mercial optimization suite based on a modified version
of SBM algorithm [61], called SQBM+, is available from
Toshiba Digital Solutions Corporation. Due to restricted
solver access, however, we could not compare SQBM+
directly with VeloxQ. Instead, to the best of our abili-
ties, we have replicated the original SBM algorithm, with
GPU acceleration, and used it as a reference in the bench-
marks. Technical details of SBM are summarized in Ap-
pendix B.

Since our physics-inspired solvers of choice are
topology-agnostic, and so is VeloxQ, we have decided to
benchmark them on three types of random instances with
planted solutions: 3-regular 3-XORSAT equation plant-
ing [62], tile planting [63], and Wishart ensemble [64].
This way we can create an ensemble of problems with ex-
actly known ground state energies, to compare the solvers
without the need for a reference solver. Tile planting and
Wishart ensemble instances are especially interesting, be-
cause apart from known ground state, their ‘hardness’ is
continuously tunable, whereby ‘hardness’ we understand
empirically observed typical difficulty, and not more pre-
cise computer-science notions of computational complex-
ity. To streamline the preparation of problems, we em-
ploy an open-source Python-based tool called Chook [65].
For examples of benchmark instances, as well as scripts
that were used to generate them see the online repository
[23].

A. 3-regular 3-XORSAT equation planting

The starting point for the generation of 3-regular 3-
XORSAT (3R3X) instances, is a system of linear equa-
tions over Z2,

n∑
j=1

aijxj = bi mod 2, for i = 1, . . . ,m, (8)

where xj ∈ {0, 1} are binary variables. Specifically, we
consider a case wherein each equation involves exactly
three randomly chosen variables, and each variable ap-
pears in exactly three equations — hence the name 3-
regular 3-XORSAT. Crucially, this system of equation
can be solved in polynomial time, using e.g. Gaussian
elimination. Its solution will be the planted ground state
of the corresponding optimization problem. Translated
into Ising form, these equations can be written as∏

j:aij=1

sj = (−1)bi , for i = 1, . . . ,m, (9)
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where sj ∈ {−1, 1} are the Ising spins. By squaring and
adding the equations, we can obtain the relevant Ising
Hamiltonian

H3R3X =

m∑
i=1

(−1)bi −
∏

j:aij=1

sj

2

≜−
m∑
i=1

(−1)bi
∏

j:aij=1

sj

= −
m∑
i=1

Jisi1si2si3 , (10)

where ≜ denotes equality up to an irrelevant constant
term. For each equation i there are exactly three in-
dices j ∈ {i1, i2, i3} such that aij = 1, and the cou-
plings Ji = (−1)bi encode the right-hand sides of the
equations. Thus, the cost function for this problem is
composed of m, 3-body Ising terms, which can be re-
duced to the usual 2-body variant with the reduction
scheme given by Eq. (7), yielding finally a 2m variable
QUBO/Ising problem. Obtaining an optimal solution of
such a problem is a challenging task for QUBO solvers,
because the low-lying excited states are far away (in the
sense of Hamming distance) from the ground state, and
so it is easy to get stuck in a local minimum [62].

Using the procedure outlined above, we have prepared
a set of random 3R3X instances with sizes ranging from
10 to 100 × 103 variables, 10 per each size. In Fig. 11
we present the averaged results of optimality gap and
runtimes. The error bars are omitted for the sake of
clarity. The outcome of this computational experiment
demonstrates that VeloxQ stands its ground among mod-
ern, physics-inspired solvers for combinatorial optimiza-
tion problems. In particular, the two sets of results de-
noted as “Custom VeloxQ 1” and “Custom VeloxQ 2”
are a testament to the flexibility of our product, which,
using knowledge about a given type of problem, can be
tuned to either favor the quality of solution or the run-
time, depending on the end user’s needs.

B. Tile planting

Tile planting (TP) instances are certain type of square
lattice Ising models with periodic boundary conditions.
They are constructed by partitioning the lattice graph
G = (V,E) into unit cell tiles C ∈ C, creating a checker-
board pattern. Each tile C consists of four vertices, and
each vertex is shared by two tiles. For each subgraph,
the Hamiltonian is defined as

HC
tiled = −

∑
⟨i,j⟩∈E[C]

Jijsisj , (11)

where the sum runs over all edges in the tile. The full
Hamiltonian is then given by the sum over all tiles

Htiled =
∑
C∈C

HC
tiled. (12)
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FIG. 11. Results of the benchmarks of VeloxQ against the
PA and SBM solvers on 3R3X instances, a) optimality gap
and b) runtime in seconds. We show data points for VeloxQ
solver in AutoTune mode (blue circles) and two manually op-
timized versions, for runtime (green squares) and for quality
of the solution (orange diamonds). For problems with up to
50 variables, the optimization procedure consistently returns
ground state solution. In case of larger instances optimality
gap increases, but does not exceed 5%. High-quality solutions
are also delivered by parallel annealing (purple inverted tri-
angles), with a runtime that differs only by a constant factor
from VeloxQ in the default version. The SBM (red right-
facing triangles) underperforms significantly in this bench-
mark, with both optimality gaps growing rapidly with systems
size, finally reaching almost 15% and runtimes demonstrating
worse scaling in the 1000+ variable regime. Moreover, this
result was obtained after extensive tuning of the SBM pa-
rameters, which should be compared with the satisfying per-
formance of VeloxQ out-of-the-box (AutoTune mode).

Importantly, if all the tile Hamiltonians have a common
ground state, then the full Hamiltonian will also share
the same ground state configuration. This fact allows
for a construction of instances with known minimal en-
ergy value [63]. The remaining freedom of choosing the
coupling constants Jij allows one to tune the level of
frustration in the system, and thus the hardness of the
problem. Without loss of generality (due to gauge free-
dom), we can assume that our target ground state is a
fully polarized, ferromagnetic state t = (+1,+1, . . . ,+1).
Then, four types of nonequivalent tiles are introduced,
Ci for i = 1, . . . , 4, such that tile of type i has i ground
states, always including the fully polarized ferromagnetic
states. A complete TP instance is obtained by randomly
selecting the tile type for each tile, according to a given
probability distribution (p1, p2, p3, p4). It was shown that
this three-dimensional space of control parameters al-
lows for a fine-tuning of the problem hardness [63]. For
the purpose of our benchmark, we choose a particular 1-
dimensional subspace in this parameter space, given by
S = {(0, p2, 0, 1 − p2) | p2 ∈ [0, 1]}, as it is the most ver-
satile one-dimensional subspace out of those exhibiting
an easy-hard transition. In general, there are three such
subspaces, since it is the fraction of C2 tiles that control
the problem hardness.

Results for two kinds of TP instances from C2 − C4

subspace, easy (p2 = 0.2) and hard (p2 = 0.8), on square
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FIG. 12. Results of the benchmarks of VeloxQ against the
PA and SBM solvers on TP instances, optimality gap in the
a) ‘easy’ regime (p2 = 0.2) and b) ‘hard’ (p2 = 0.8) regime.
Panel c) shows the runtimes only in the (p2 = 0.8) case,
since value of p2 does not affect the runtime. We show data
points for VeloxQ solver in AutoTune mode (blue circles) and
two manually optimized versions, for runtime (green squares)
and for quality of the solution (orange diamonds). Quality-
optimized VeloxQ is the only solver able to obtain ground
states for all sizes in the easy regime, and consistently out-
performs other solvers in the hard regime. If the runtime is
the main concern, it is possible to decrease the it by a factor
of 3, while still maintaining the optimality gap below 1% in
the p2 = 0.8 case. Parallel annealing (purple inverted trian-
gles) behaves similarly to VeloxQ in most of the easy regime
(N ≤ 104), but it produces noticeably worse (although still of
high quality) solutions beyond it. Nevertheless, it has an ad-
vantage for problem sizes below 103 variables, since in is able
to deliver solutions remarkably fast. After an appropriate
hyperparameter tuning, the SBM (red right-facing triangles)
in its original formulation demonstrates competitive perfor-
mance, emerging on top of PA in the easy regime, and on
par with it in the hard regime. Still, VeloxQ solver is able to
outperform it in both cases.

lattices with side of length L ∈ [10, 300], are presented in
Fig. 12. Since these instances are also randomized, for
each size we have prepared 10 copies and averaged the
results, again omitting the error bars for clarity. With
a little optimization, VeloxQ can consistently find the
ground state for even the largest instances with 90k vari-
ables, in the easy regime. Nevertheless, the default set-
tings are already sufficient to outperform PA and SBM
in both difficulty regimes.

C. Wishart ensemble

Both 3R3X and TP problems are formulated as Ising
models with rather sparse coupling matrix. On the other
hand, Wishart ensemble planting (WP) provides a way
to construct instances with known ground state energy
and all possible pairwise couplings. We begin by choosing
a ground state configuration, which again can be chosen
as the fully polarized ferromagnetic state t, and subse-
quently concealed by gauge randomization. Let now W

be an N ×M real matrix, such that

WT t = 0, (13)

i.e. describing a set of M linear equations in N vari-
ables, with the ground state t as the solution. The ratio
α = M/N of equations to variables will determine the
hardness of the problem. This property guarantees, that
an Ising model defined as

HWP = −1

2

∑
i,j

Jijsisj , (14)

with

J̃ = − 1

N
WWT (15)

J = J̃ − diag(J̃), (16)

has a ground state s = t with energy

E0 = −1

2
tTJt =

1

2
Tr(J̃). (17)

The actual construction of the matrix W is carried out
by sampling each column vector w from a multivariate
Gaussian distribution with zero mean, and covariance
matrix Σ, given by

Σ =
N

N − 1

[
1N − 1

N
ttT

]
, (18)

where t denotes our planted ground state. It can be
shown, that wT t = 0 for all columns of W , which con-
cludes the construction. The resulting random matrix
WWT follows a matrix version of χ2 distribution, known
as the Wishart distribution [64].

When the equation-to-variable ratio α ≤ 1, there exists
a stable set of paramagnetic configurations (uncorrelated
with planted ground state), which essentially behaves as
a local minimum trap for classical heuristic solvers. The
generated problem is likely to be solved with high proba-
bility only if the initialization happens by chance within
the ground-state basin of attraction (assuming no escape
mechanism is present). Interestingly, the parameter α
influences the size of this basin, with higher values in-
creasing the chances of a successful solution due to a for-
tunate initialization. Therefore, in Fig. 13 we present the
benchmark results for two regimes, α = 0.2 (hard) and
α = 1.0 (easy). Since the WP instances are fully con-
nected, the number of variables is limited to N ≤ 5000.
For each of the presented system sizes, ten instances were
generated and the results averaged. An interesting obser-
vation regarding the nature of ‘hardness’ in the Wishart
ensemble, can be made on the basis of the results pre-
sented in Fig. 13. In the easy regime, each solver pro-
duces a ground state solution up to a certain, solver-
depended system size, after which the solution quality
rapidly degrades, finally settling at the optimality gap of
around 10−15%. It is worth noting, that VeloxQ can be
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FIG. 13. Results of the benchmarks of VeloxQ against the
PA and SBM solvers on WP instances, optimality gap in the
a) ‘easy’ regime (α = 0.2) and b) ‘hard’ (α = 0.8) regime.
Similarly to TP case, panel c) shows the runtimes only in
the α = 0.2, since value of α does not affect the runtime of
considered solvers. We see that the default VeloxQ settings,
denote by AutoTune mode (blue circles), are not optimal for
this class of problems. However, thanks to its flexibility, it is
straightforward to tune the performance to deliver simultane-
ously better solutions and faster runtimes (green squares) or
to focus just on the quality of the sampled states (orange di-
amonds). The PA (purple inverted triangles) underperforms
in the easy regime, but is able to match the default VeloxQ
performance in the hard regime (although with a noticeable
increase in runtime). On the other hand, Simulated Bifurca-
tion yields excellent results remarkably fast in the easy regime,
but its performance deteriorates in the hard regime.

tuned to produce optimal configurations for the broadest
range of system sizes (up to N = 1000), and the best re-
sults beyond this range. The hard regime is characterized
by a qualitatively different behavior, with all considered
solvers failing to deliver ground state solutions even for
the smallest instances with N = 100. Even though the
optimality gap increases with system size, the change is
not as drastic as in the easy regime, and VeloxQ is able
to maintain the gap below 5% for default setting and at
the level of 1% for the quality-optimized version.

VIII. BENCHMARKS AGAINST MODERN
B&B ALGORITHMS

Branch and Bound (B&B) [66] is a foundational frame-
work for solving combinatorial optimization problems, in-
cluding QUBO and Ising model formulations. Over the
years, numerous enhancements have been developed to
improve its efficiency, focusing on solution-space pruning
techniques and accelerating convergence. In this section,
we compare VeloxQ solver against selected B&B algo-
rithms. including modern refinement of the algorithm
developed by Quantagonia [14].

This comparison aims to underscore the differences
in performance and scalability among the tested ap-
proaches, with a focus on demonstrating the potential
advantages of VeloxQ in multiple domains. Key evalua-
tion metrics include solution quality, computational cost,

and scalability to larger problem instances. The selected
B&B methods construct solutions iteratively by solving
incremental subproblems, progressively appending spins
to build the solution. This approach aligns naturally
with the binary decision tree representation over fixed
{−1, 1} spin-like values. Memory efficiency is enhanced
by maintaining a pool of stored partial solutions, while
subtree selection is guided by heuristic bound functions.
These functions are critical components that determine
the effectiveness of each method. The choice of bound
functions allows for a diverse range of methods [67], in-
cluding modern implementations adopted in the industry
[13, 14, 68]. For examples of benchmark instances, as well
as scripts that were used to generate them see the online
repository [23].

As the reference methods used for comparison to
VeloxQ, we implemented search algorithms based on two
bound functions. A standard approach to B&B algo-
rithms is represented by Bbase [24], in which the pre-
fix subproblem energy is directly used as the bounding
premise. The modern refinement of B&B is denoted
as BSPD, in which the bound relates to the subprob-
lems transformed to semi-positive definite matrix formu-
lations. This allows estimating energy minima for sub-
problems. Such an approach, reflecting selected state-
of-the-art techniques and modern advancements in opti-
mization, aligns with the algorithmic outline described in
[14]. SPD-based methods are highly adaptable, includ-
ing successful applications to solving QUBO and Ising
model problems in various computational environments,
including quantum computing [13, 69]. Our implemen-
tation, optimized for the CUDA runtime environment to
facilitate a practical comparison with VeloxQ, is detailed
in Appendix C.

The computation time and solution optimality
achieved by B&B methods using Bbase and BSDP, in
comparison to VeloxQ, are presented in Fig. 14. To en-
sure a diverse range of matrix sizes for benchmarking,
pseudo-random dense matrices were generated. While
B&B methods can operate on sparse matrices, the com-
putational overhead is primarily determined by matrix
size, which corresponds to the height of the search tree.
As such, dense matrices were chosen as the most suitable
for this study. Matrix sizes were distributed within the
range of 1000 to 10 000. Problem instances with smaller
matrices were excluded, as they do not reflect the scope
of the method and are often more efficiently solved by
brute-force approaches. Sizes up to 104 were chosen as a
practical upper limit for our computational setup, with
individual runs requiring less than three hours.

The results of the benchmark show that VeloxQ ob-
tains comparable or better solution quality than both
B&B algorithms. The most profound difference concerns
the runtime: even for the smallest instances VeloxQ is
two orders of magnitude faster than the B&B algorithms,
and this difference increases with the growing instance
size.
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FIG. 14. B&B methods: a) reference gap and b) run-
times for dense, pseudo-random instances with up to 10 000
variables. For instances exceeding 4 000 variables, the Bbase

variant became unreliable, pruning significant subtrees, and
resulting in an optimality gap exceeding 10%. In contrast, the
BSPD variant maintained consistency, achieving results within
twice the energy gap of VeloxQ. This reliability came at the
cost of computational efficiency, with BSPD being approxi-
mately 10× slower than Bbase. VeloxQ, however, consistently
achieved comparable or better accuracy while being 100–300×
faster, positioning it as the superior choice for instances in this
size range. VeloxQ values in the plot were computed using
Custom VeloxQ with 150 internal states. Reference energies
were approximated by invoking VeloxQ iteratively, starting
with 1000 states and increasing by 50% until the best energy
value was repeated three consecutive times, ensuring robust
convergence.

IX. SUMMARY

The aim of this paper was to provide a versatile set of
benchmarks that allow to compare VeloxQ solver to the
most promising QUBO solvers based on emerging tech-
nologies. All approaches to QUBO optimization were
taken into consideration. Solvers based on emerging
quantum technologies were investigated: D-Wave quan-
tum annealers, and the algorithm developed for digital
quantum computers by Kipu Quantum. We also in-
cluded physics-inspired algorithms based on tropical ten-
sor networks. Among conventional classical algorithms
we chose BEIT’s solver, the efficient implementation of
the brute-force algorithm [9], and the modern develop-
ment of Branch and Bound algorithm. The broad choice
of test instances accommodates strengths of particular
solvers: For this reason, in addition to problems with all-
to-all connectivity, we extensively studied problems that
fit natively on quantum annealer’s topology, or in case of
digital quantum algorithms transpile directly on digital
quantum hardware. In this way the performance com-
parison is not biased by an unfavorable instance choice
for the solvers VeloxQ is benchmarked against. This
methodology allows highlighting versatility of VeloxQ:
Using default set of parameters it was usually able to
obtain solution of the problem with quality and time ei-
ther matching those of competitive solvers or surpassing
them. In all remaining cases, a straightforward tuning of
VeloxQ parameters allowed to achieve the same or better

results.

Comparison with the annealers shows that, for in-
stances natively fitting topology of an annealer, quality
of VeloxQ solutions is comparable to that provided by
the annealer. We tested also instances of increasing vari-
able size, comparing VeloxQ to D-Wave hybrid solver, in
which annealers are used to speed up some subroutines.
Our test show that solution quality of VeloxQ is compa-
rable that of D-Wave hybrid solver, but achieved in much
shorter time. VeloxQ is also able to handle large-scale in-
stances that are intractable to the D-Wave hybrid solver.
D-Wave annealers excel in time-to-solution for small in-
stances that naturally align with the topology of D-Wave
devices, offering an advantage in such cases. However, in
this case VeloxQ can outperform D-Wave solvers upon
appropriate hyperparameter readjustment. The consid-
erable advantage of VeloxQ over D-Wave solvers is clearly
visible for problems with all-to-all connectivity: Qual-
ity of D-Wave solver solution significantly deteriorates
with the growing problem size, whereas VeloxQ produces
highly accurate solution in shorter time.

VeloxQ performs also favorably for weighted MAX-3-
SAT instances that are natively formulated in terms of
HUBO problems. Based on comparison with the data
presented in [6], our results indicate that VeloxQ outper-
forms the quantum-digital algorithm developed by Kipu
Quantum. Although the Kipu’s algorithm is severely re-
stricted by the number of qubits of the present gate-
based quantum computers, we decided to test VeloxQ
in regime of ultra-large instances, intractable to digi-
tal quantum solutions in the foreseeable future. VeloxQ
solved QUBO instances consisting of up to ∼ 200 × 106

variables outperforming significantly the reference solvers
CPLEX and SA in terms of both solution quality, and
time-to-solution.

The fact that we chose CPLEX as a solver providing
reference solutions serves as an indirect comparison of
VeloxQ to the industry-standard QUBO solution meth-
ods. It is worth to point out that on the chosen set of
instances the solution quality of both solvers is compa-
rable, whereas VeloxQ runtime is supreme over that of
CPLEX, as for the largest instances in our benchmarks
CPLEX was not able to produce a meaningful solution
in a manageable time.

Comparison of results of VeloxQ and solvers providing
solution certification reveals that for modest size prob-
lems VeloxQ produces optimal solutions in time shorter
than the considered solvers. This conclusion holds for
the efficient implementation of the brute force solver [9],
as well as solvers exploiting underlying structure of the
optimization problem based on tropical tensor networks
as well as BEIT’s solver (note that in this case the com-
parison is not straightforward as, due to the cloud access,
we could not get obtain the bare solver runtime).

VeloxQ was benchmarked against physical-inspired al-
gorithms parallel annealing [3], and simulated bifurcation
[1]. In these benchmarks instances with planted solutions
were used generated accordingly to 3-regular 3-XORSAT
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equation planting, tile planting, and Wishart ensemble
planting. Simulated bifurcation algorithm is advanta-
geous over VeloxQ only for certain type of Wishart in-
stances. Parallel Annealing produces solutions of compa-
rable quality to the ones of VeloxQ, but for small instance
sizes the time-to-solution of Parallel Annealing can be
shorter than that of VeloxQ with default parameters, ex-
cept for Wishart instance, for which Parallel Annealing
requires longer runtime for all problem sizes. As in the
case of D-Wave, the change of default VeloxQ parameters
can lead to the superior runtime over that of Parallel An-
nealing and Simulated Bifurcation algorithms, while the
quality of solutions of these algorithms remain similar.

Performance of VeloxQ was also benchmarked against
the modern development of the conventional Branch and
Bound algorithm proposed by Quantagonia. VeloxQ ob-
tains solutions of comparable or better quality, and out-
performs this family of algorithms both in terms of the
runtime: It is at least two orders of magnitude than the
considered algorithms.

The results presented in this paper allow us to con-
clude that VeloxQ is an efficient large-scale QUBO solver
offering competitive performance in time-to-solution and
solutions quality, and superiority in the regime of ultra-
large instances, to the leading quantum and classical op-
timization methods. Moreover, it offers unparalleled ver-
satility across diverse instance problem structures and
sizes. Thus, it presents a compelling alternative to the
existing QUBO solution tools.
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Appendix A: Transformations between QUBO and
Ising model formulations

This appendix follows conventions of [26]. To repre-
sent a QUBO problem as an instance of Ising model one
transforms the binary variables xi = 1

2 (1 + σi). In this
case the parameters of the related Ising model are given

by

hi =

N∑
j=1

Qij , (A1)

Jij =


Qij , i ̸= j,

0, i = j,

(A2)

and values of the relevant quadratic functions are related
as

Q(x) =
1

2
H(s) − 1

2
C, (A3)

with C =
∑N

i=1

∑N
j=i+1 Qij +

∑N
i=1 Qii.

On the other hand, an Ising model can be represented
as a QUBO problem via discrete variable transformation
si = 2xi−1 The parameters of the related QUBO model
are given by

Qij =


Jij , i ̸= j,

hi −
∑N

l=1 Jil, i = j,

(A4)

and the relation between the functions is

H(s) = 2Q(x) + C, (A5)

with C = −∑N
i=1

∑N
j=i+1 Jij +

∑N
i=1 hi.

Appendix B: Details about Parallel Annealing and
Simulated Bifurcation

Simulated annealing (SA) is a well-known heuristic op-
timization algorithm that employs thermal fluctuations
to escape local minima. During the evolution of the sys-
tem, the temperature is gradually decreased, leading to
decreasing fluctuations and a higher probability of ac-
cepting only downhill moves. Ultimately, the system set-
tles in some low-energy state. On the other hand, Paral-
lel Annealing (PA) is inspired by the quantum adiabatic
annealing, in which the system’s Hamiltonian is time-
dependent, and gradually switches from the initial form,
with known ground state, to the target Hamiltonian. Ac-
cording to the Adiabatic Theorem [70] from quantum me-
chanics, if this evolution is performed slowly enough, the
system will remain in the ground state of the Hamiltonian
at all times, thus reaching the ground state of the tar-
get Hamiltonian and solving the optimization problem.
PA adapts this idea to the realm of classical heuristic
optimization, by considering a time-depended, classical
Hamiltonian of the form

H(t) = λ(t)Hinitial + Htarget, (B1)

where t plays the role of the time parameter, and λ(t)
is a function that gradually decreases from a sufficiently
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large value to zero. By analogy with the quantum case,
Hinitial is chosen to be a function with easily obtain-
able global minimum. In the original work [3], the au-
thors employed a quadratic function Hinitial = 1/2

∑
i x

2
i .

Since there is no actual physical process that would
evolve towards low-energy configurations, a manual up-
date scheme has to be introduced. An intermediate, ana-
log spin variables xi, taking values in the interval [−1, 1],
are used as a proxy for the true binary variables. The
classical spins can be in turn retrieved via the sign func-
tion, si = sign(xi). The update rule for the analog vari-
ables is given by a gradient descent step,

xi(t + ∆t) = xi(t) − η∇H(t), (B2)

with the gradient computed as a function of continuous
variables, but the target part evaluated with binarized
spins:

∇H(t) =λ(t)∇Hinitial + ∇Htarget

=λ(t)x + Js + h. (B3)

Drawing inspiration from Neural Network training, clip-
ping [71],

x → max(−1,min(1,x)), (B4)

and momentum [72]

m(t + 1) = αm(t) − η∇H(t), (B5)

x(t + 1) = x(t) + m(t + 1), (B6)

are also utilized to stabilize the optimization process.

Another optimization algorithm inspired by quantum
adiabatic computing is the Simulated Bifurcation Ma-
chine (SBM) [2]. It is a classical approximation of
a network of nonlinear quantum oscillator, described by
a chaotic system of Hamilton equations:

H =
a0
2

N∑
i=1

p2i +

N∑
i=1

(
q4i
4

+
a0 − a(t)

2
q2i

)
− c0

N∑
i=1

hiqi +
1

2

N∑
j=1

Jijqiqj

 , (B7)

q̇i =
∂H

∂pi
= a0pi, (B8)

ṗi = −∂H

∂qi
= −

[
q2i + a0 − a(t)

]
qi + c0

 N∑
j=1

Jijqj + hi

 . (B9)

This process can be viewed as the dynamics of particles
with mass a−1

0 , positions qi ∈ R, and momenta pi ∈ R,
in a time-dependent single-particle potential and inter-
acting through Ising-like interactions. The matrix J and
vector h represent the Ising minimization problem being
solved. Hyperparameters a0 and c0 are typically taken
to be a0 = 1 and c0 = 1/λmax, where λmax is the largest
eigenvalue of J (to bound the extremal values of Ising
term), while a(t) is a linearly increasing time-dependent
function that drives the system through the bifurcation
point, which occurs roughly when a(t) = a0. After the bi-
furcation, the system’s energy landscape approximately
encodes the local minima of the Ising term, leading the
particles to converge toward low-energy solutions of the
binary optimization problem. These solutions can be ex-
tracted by taking si = sign(qi). Additionally, the chaotic
dynamics of the SBM equations result in sensitivity to
initial conditions, allowing many independent replicas
to be run simultaneously from different starting points,
further enhancing efficiency and enabling massive paral-
lelization.

Appendix C: Bound functions used in B&B methods

The remarkably straightforward B&B method we
adopt utilizes the subproblem energy as the primal bound
function. For an Ising model instance defined by (J, h),
given a state s and a subproblem U ⊆ {1, . . . , n}, the
bound is computed as:

Bbase(J, h, s, U) =
∑
i∈U

hisi +
∑
i,j∈U
i<j

Jijsisj . (C1)

While this method is efficient when applied to batches
of subproblems incrementally, it does not account for the
remaining subsets of spins outside U . This limitation can
be addressed by employing alternative bound functions.
SPD formulation. The improved B&B method

involves transforming each evaluated subproblem into
a form based on a semi-positive definite (SPD) matrix.
The relaxed solutions to such subproblems can be used as
bound function to B&B algorithm – which follows mod-
ern algorithm outline published in [13, 14]. We are go-
ing to refer to a generalized, matrix-based formulation
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FIG. 15. The B&B progress for selected instances demon-
strates that the dynamics of Bbase and BSPD are roughly
similar. Bbase achieves better intermediate states for gk5e,
but fails to recognize the more optimal state found by BSPD.
While the time characteristics of BSPD is slower initially, as
the size of the remaining subproblems decreases, the subse-
quent iterations of BSPD become progressively faster. How-
ever, the overall execution time of either B&B method ex-
ceeds the completion time of VeloxQ remarkably quickly, un-
derscoring the significant performance advantages of VeloxQ.

of Ising model for J defined as a symmetric connection
matrix:

E(J, h, s) = s′Js/2 + s′h. (C2)

This formulation can be extended to matrices that de-
scribe numerical problems beyond Ising model, notably
- with non-zero diagonal of J . In order to reformulate
the problem with a SPD matrix, we shift all the diagonal
elements by

d(J) = max(0,− eigmin J) + ε, (C3)

where ε > 0 constant is included to ensure numerical
stability. This ensures that J̃ = J + d(J)1is a positive
definite matrix.

Using J̃ matrix instead of J introduces an offset to the
energy that is constant with respect to s

E(J̃ , h, s) = E(J, h, s) + d(J) · n, (C4)

which means that the binary problems would have the
same extrema.

Relaxation of this problem into a continuous domain
r ∈ Rn leads to the following quadratic SPD form:

E(J̃ , h, r) = rT (J̃/2)r + rTh → min . (C5)

Notably, the equality (C4) is ensured only for binary
states r. While the SPD formulation does not directly
solve the original Ising model, it provides a tractable
heuristic, resulting in efficient approximation of solu-
tions.

N
Bbase BSPD VeloxQ

gap t [s] gap t [s] gap t [s]

gka1a 50 0.0% 0.41 0.0% 0.98 0.0% 0.01

gka2a 60 0.0% 0.68 0.0% 1.71 0.0% 0.01

gka3a 70 0.7% 1.18 0.7% 2.6 0.0% 0.01

gka4a 80 0.0% 1.1 0.0% 3.44 0.0% 0.01

gka5a 50 0.0% 0.44 0.0% 1.0 0.0% 0.01

gka1c 40 0.0% 0.28 0.0% 0.5 0.0% 0.01

gka2c 50 0.0% 0.5 0.0% 1.1 0.0% 0.01

gka3c 60 1.85% 0.66 0.0% 1.57 0.0% 0.01

gka4c 70 0.0% 0.88 0.92% 2.43 0.0% 0.01

gka5c 80 2.62% 1.04 0.08% 3.31 0.0% 0.01

gka1d 100 4.34% 1.53 0.0% 5.72 0.24% 0.01

gka2d 100 2.27% 1.6 7.73% 6.01 0.0% 0.01

gka3d 100 1.77% 1.74 1.28% 5.9 0.33% 0.01

gka4d 100 5.48% 1.65 2.5% 5.82 0.0% 0.01

gka5d 100 3.16% 1.57 0.64% 5.8 0.0% 0.01

gka1e 200 1.17% 5.41 10.9% 27.6 0.34% 0.05

gka2e 200 11.17% 15.41 6.76% 47.51 0.0% 0.01

gka4e 200 5.72% 5.57 3.8% 27.8 0.0% 0.01

gka5e 200 7.5% 5.49 5.28% 27.53 0.03% 0.01

Table I. Computational results were obtained for selected
GKA instances [73]. Files and optimal energies from the Biq
Mac Library [74] were converted to Ising formulations. The
B&B benchmarked methods were configured to maintain 220

states in memory. Using the BSPD bound function resulted
in execution times that were 2 to 6 times longer compared
to baseline B&B. However, it achieved smaller energy gaps in
75% of cases, especially for larger instances. In comparison,
a simple setup of VeloxQ with 150 internal states and Au-
toTune was used. VeloxQ demonstrated notably better per-
formance, achieving superior results with significantly lower
runtime. One instance from the set (gka1d) was solved us-
ing B&B with BSPD, while tested VeloxQ did not reach the
ground state.

Solution. The relaxed SPD problem can be solved
using methods such as proximal operators. The optimal
relaxed solution is given by:

r∗(J, h) = −J̃−1h. (C6)

Since J̃) is positive definite, it is non-singular, ensuring
the existence and uniqueness of r∗(J, h).

Bound function for B&B. For the complete Ising
problem (J, h), the heuristic score can be computed as:

BSPD(J, h, s) = H(J̃ , h, −J̃−1h). (C7)
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In the context of B&B, the bound function is sup-
posed to estimate the optimal energy of a remaining
subproblem. For a subset of spins U ⊆ {1, . . . , n}, let

Ũ = {1, . . . , n} \ U}. Then:

BSPD(J, h, s, U) = BSPD(JŨ×Ũ , hŨ , s), (C8)

where JŨ×Ũ and hŨ represent the reduced matrices and
vectors for the remaining subtrees in the search pro-
cess. This approach involves solving a linear system,
which can be practically implemented with batches of
states through matrix factorization techniques, such as
Cholesky decomposition, chosen based on the sparsity of

the J̃ matrix. Additionally, determining the shift pa-

rameter dd requires computing the minimum eigenvalues
of the matrix. In our simulations, we employ ARPACK-
inspired algorithms [75], adapted for the CUBLAS frame-
work, to ensure efficient computation. Alternative meth-
ods, tailored to specific runtime environments, include
making this approach feasible for quantum computing
applications [69].

To validate this approach, we also performed bench-
marks using the GKA dataset [73], which is a recog-
nized standard for evaluating B&B methods for quadratic
problems [24], included in the Biq Mac Library [74]. The
results of these benchmarks, detailing the performance
of the selected B&B approaches, are presented in Table I
and Fig. 15.
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Z. Lü, The unconstrained binary quadratic programming
problem: A survey, Journal of Combinatorial Optimiza-
tion 28, 58 (2014).

[25] A. Abbas, A. Ambainis, B. Augustino, A. Bärtschi, and
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